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Abstract

Electromagnetic fields of the vacuum mode near a conducting mirror are modified with

respect to those in free space, with their amplitudes having a sinusoidal spatial dependence

from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field

mode and intense corehent light with a beam splitter, we may detect this fluctuation of the

vacuum mode in a homodyne detection scheme. It will give new method to produce squeezed

states of light with a single mirror placed close to an unused port of a beam splitter. We

show that the amplitude fluctuation of the combined light can be reduced by a factor of 2

below that of the coherent light. We also discuss the limitations due to the finite line width

of the laser and the effective absorption length of the photodiodes.

1 Squeezed light generation with a conducting mirror

The characteristics of vacuum fluctuations in a confined space have been studied in several cases,

for example near an infinite plane conducting mirror [1], between two parallel mirrors and in a

spherical cavity [3]. Here we consider a tangential vacuum-field mode with its wave vector k normal

to the conducting surface (z-direction) [2], and we choose the polarization and the propagation

of the electric field along the x and z-axis, respectively. Then the electric field operator for the

vacuum field entering the beam splitter (see Fig. 1) becomes

= _-_t[ ''''_ sin(kz)(glke-i'kt- a?keiw_t)_,
V eoV-i-

(1)

where wk is the frequency for the mode k(wk = ck), h and ¢o have the usual meanings, and V

is the normalization volume [1]. Note that the sinusoidal spatial-dependence sin(kz) for the field

amplitude comes from the boundary condition that the tangential components of the electric field

modes on the conducting surface should vanish.

We now consider a homodyne detection scheme to measure the quantum mechanical noise

of the signal (i.e. amplitude-modulated vacuum field ) as shown in Fig. 1. Let us assume, for

simplicity, that the electric field for the local oscillator has a single mode(we will consider the

multimode effects in the next section). Then the local oscillator field can be written as

E, =/)d + _;q (2)
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with

Ec, = , (_ ¢-_(_,-koz)_ a. al_,-kozl)_, (3)

,. V2_oV(b__-,(,o_,-._l_/,_ _-,(_.-_=)) _, (4)

where w is the laser frequency ( w = cko). Here we have decomposed the coherent light/_t into

/_ct and /_q [4]. /_a is the classical analogy of the coherent light which has a definite amplitude

and phase, whereas/_q is the quantum fluctuation in the electric field of the coherent light which

is simply equivalent to the vacuum fluctuation.

Considering the vacuum mode relation in the Fig. 2, we can get the electric field in fluctuating

vacuum modes at the detector 1

_(+)
'uac_l

• [ hwk _-? _i(,.,kt+kz,)

k

_ (5)

where zl(Z1) represents the length for the beam path between the single mirror (laser) and the de-

tector 1. We have separated the electric field into positive-/_(+J (--_ e ;_t) and a negative-frequency

components E(-) (,-_ e-i_'t), and note the propagation-direction of traveling wave. We also add the

factor :_2 for the normalization of the vacuum fluctuation.

Using photodetection theory [5], we obtain the photocurrent ] as

F
i = I dt'h(t- t')k(+)(z,t ') F.(-)(z,t'), (6)

d.... oo

where h(t - t') is the photodetector response function [6]. Assuming instantaneous response of

the detector, we can approximate h(t - t') as hS(t - t'). Then the photocurrent induced on the
detector 1 is

b(+) {V@_!/-)(Zl,t) + Ewe,l}"/l(Z,t) = h{k/rTE_-)(Zl,t)Jr- E, vac,1} X _(-) (r)

Since the expectation value of a*a is much greater than that of _t5 and _t_, we keep only the

terms which contain a or a'. If the reflectivity (R) of the beam splitter approaches to 1, the Eq.

(5) surely represents the positive frequency part of the Eq. (1). In that case, 51 and h2 are totally

decoupled and we can find the standing vacuum mode in the port 1.

Using the condition in Eq. (5), ]1 is obtained as

#(z,,Z,)= :-_{V_e'¢(T + e-lko(z,+*,) _ Re-iko(Z,-,,))h, _ Tv_e'¢(1 + e-iko( Zl - Zl ) )_ 2

+vl-Te-i¢'(T + eikO(z'+*,) _ Reiko(Z,-_))a _ _ Tvr-Re-i¢(1 + eik°(z'-*'))5_}, (s)

where I_' is the time-averaged photocurrent which is normalized with respect to h, and we have

replaced a with I a [ e% Note that in Eq. (8) we have included only one vacuum field mode
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identical to the laser light with its wavevector k and frequency w = cko since only that mode

survives as a result of the time average effect on the detector. We have neglected the a*a term

in ]_' , since it does not include any fluctuation and corresponds to a constant dc current which

can be filtered out by ac coupling. And the average values of I{' are expected to be zero, since the

operators ha and _ both represent the fluctuating vacuum field modes.

The sum and difference of these photocurrents I_', I_ are obtained from the Eq. (8). It becomes

_[v/Te_¢{T + e -_k°(zl+zl) - Re -ik°(z_-z_) -4- R 4- Re-ik°(z2-z2)}hx

+ v'_e-_¢{T + e_k°(z_+z_) - Re ik°(z_-_) q- R "4-Reik°(z2-z_)}h_

- V_eii'{T + Te -ik°(z'-_a) -I- R 4- e -ik°(z2+_2) _ Te-ik°(z2-_2)}h2

- V'_e-i¢{T + Te iko(z_-_) 4- R 4- e iko(z2+_2) :]: Te_k°(z'-_)}h_]. (9)

We now evaluate the square of each quantity to find its fluctuations. Squaring the Eq. (8), we

gather the terms (aia!) which contains the nonzero vacuum expectation value. Then the results

become

T I°_ 12{T 2 + 2Tcos[ko(Z1 + z1)] .-_ 1 71- R 2 - 2Rcos(2koZl) + 2RT},
[I_(Zl'Zi)]2 -- 2

(lO)

and the modulation effect due to the cos(Z/+ zl) term will vanish , since the origins of the Za and

Z2 are not an absolute one for the traveling local oscillator mode. However, the origin of the Zl

and z2 is absolutely fixed to the mirror position so we will keep only this modulation effect due

to cos(2zl,2) term. Together with the relation R + T -- 1, Eq. (10) finally become

I_(zl) = T la 12{1 - Rcos(2koza)}, (11)

These results, Eq. (11), clearly show that the intensity fluctuations measured at each photode-

tector exhibit a sinusoidal spatial dependence. The photocurrent fluctuations for each detector

comes partly from the vacuum field in the local oscillator itself, and partly from the vacuum

field modified by the perfect mirror. Note that the sinusoidal modulation in Eq. (11), which is

responsible for amplitude squeezing, is totally due to the vacuum field mode that has the same

frequency as the laser oscillator but is altered by the perfect mirror.

For the balanced homodyne detection, assuming T = R = 1/2 , the resulting quantum fluc-

tuation of the modulated light may fall below that of the coherent state i.e. become squeez..ed

as shown in Fig. 2. The fluctuation of the coherent state without the perfect mirror can be

calculated by replacing cos(koza,2) by its average value zero so that Eq. (11) simply becomes a

constant value i_ as the result of the usual beam splitter . On the other hand, if we consider

the situation such that the distance zi(i = 1,2) between the perfect mirror and each detector is

well resolved and satisfies koZ_ = n_r(n: positive integer), then Eq. (11) reduces to _41-_. In other

words, the measured quantum fluctuations may fall below that of the coherent vacuum state by as

much as 50%. This squeezing limit comes from the intrinsic fluctuations of the coherent state of

the laser itself, which is combined with the modified vacuum field with its amplitude suppressed

at the detector position such that koZi = nTr(i = 1,2).
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The quantum fluctuations of the squareof the sum and difference of the photocurrents I_' and

I_ are similarly obtained from Eq. (9). Squaring this Eq. (9) and keeping the non vanishing

terms, we can obtain

< (I F + I_) 2 >= (I, + I2) 2

TIll 2
- 2 [T24-2TR+aR=+l-2Rc°s(2k°zx):t=2Rc°s(2k°z')_2R21

Rill =
+ 2 JR2± 2TR + 3T2 + 1 - 2Tcos(2koz2) + 2Tcos(2koz2) q: 2T2], (12)

where we have used the relation Z1 - zl = Z2 - z2. Using the relation T + R = 1 , we simplify

this equation (12) like this,

(I_ 3- la) 2 =] a [2 [1 - (1 q: 1)TR{cos(2koz,) + co,(2koZ2)}l. (13)

We find that fluctuations of the sum of I_ and I_ in Eq. (13) is not dependent on z,,z2, since__this

fluctuation has come from the local oscillator. On the other hand, as in the case of I_ and I_, the

fluctuation of (/1 - I2) 2 which comes from the modulated vacuum field contains the important

spatial modulation with a period of 7r/ko. The spatially-averaged fluctuation of (I_ - I2) 2 is [ a ]2,

which is just the quantum fluctuation of the free-space vacuum field without the mirror. However,

the fluctuation of the difference at the detector position such that kozi = n_r(i = 1,2) becomes

zero. The resulting fluctuations of (I1 - I2) 2 in Eq. (13) are also plotted in Fig. 2. In this Fig.

2, we have replaced the cos(koz2) with zero, which represents the average value, and have plotted

(11 - 12) 2 as a function of zl.

2 Practical limits: finite linewidth and absorption length

So far, we have considered a monochromatic coherent light for the local oscillator. The laser

light, however, always has a finite linewidth, so that the modulation depth in Eqs.(ll) and (13)

may be decreased as the linewidth increases. In this section, we will consider the practical limits

to squeezing due to the finite active layer depth of the photodetector as well as the finite laser
linewidth.

The effects of the line broadening can be calculated from the Gaussian probability density

function [7]

1 e[_(k_ko)2/Ak2]. (14)
P(k)- (v/__Ak)

Another practical limit comes from the finite thickness of effective absorption-layer of the pho-

todetectors. The period of the spatial modulation of the quantum fluctuations is of the order of

the optical wavelength, whereas the effective depth of the detectors is typically much larger than

the wavelength. The probability that a photon is converted into an electron-hole pair at a distance

from the surface of the detector's active region can be written as [8]

P_(() = _e -_, (15)

where _ the absorption coefficient of the detector material.
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We can evaluate the expectation values of the fluctuations in Eqs. (11) and (13), with respect

to this probability function and obtain

T Ic_ 12 [1 - Re -z_z_k2

_{cos(2kozl + ¢0)--e-*D cos[2ko(zl + D)+ ¢o]}1X (16)

and

(11-/2) = ] o_ ]2 (1 - 2TR × [

_¢e-Z_a*2{cos(2koz, + ¢o)- e -_o cos[2ko(z, + D)+ ¢o1}

 /4ko + !¢2

+ ae-z_ak2{c°s(2k°z2 + ¢°?k2o e-'D_/4+ t¢2c°s[2k°(z2 + D) + ¢o]}]). (17)

where ¢o = arctan(2k_-_) and D is the thickness of the depletion layer of the photo detector.

Note that we also have used the fact that the variation of e-(z+e)2"Ak2 in the region [0,D] is so

small that we can extract this term as a constant out of the integrand in the above equations.

We can easily see from Eqs. (16) and (17) that all the modulation terms which have Zl,Z2

dependence are reduced by a scale factor e-Z_ _k_ _/_/4ko 2 q- t¢2. In Figure 3, we plot the fluctuations

of _ and (11 -/2) 2 in Eqs.(16) and (17) with respect to the absorption coefficient t¢ and Azl. To

observe deep modulations more than anything else, we need a large absorption coefficient t¢ for the

detector. For an Ar + laser light (_ = 514.5nm or ko = 122122cm -1 ), the absorption coefficients

of the Si and Ge are about 104cm -1 and 4 × 10Scm -1, respectively. The scale factors are thus 0.04

and 0.85 for Si and Ge detectors. Therefore it would be possible to observe the squeezing effects

with a Ge type detector, However, it might be hard to measure a modulation of the quantum

fluctuations for the Ar + ion laser with a silicon detector . If we make a very thin depletion layer

for the silicon detector in order not to wash out the spatial modulation, the quantum efficiency

rI will decrease, which implies the fact that all the photons are not converted into electron-hole

pairs. Some extra noise will then add up with a relative amplitude (1 - r/), and this extra noise

will also degrade the modulation of the quantum fluctuations.

The linewidth of a single-mode frequency-stabilized Ar + laser is better than 1 MHz , which

is equivalent Ak = 0.0002cm -1. The scale factor for this linewidth e -'xk2"_ is 0.9996 for z ,_

100cm. Therefore the practical limit to the modulation or squeezing effects is mainly due to the

characteristics of the photodetectors in use.

3 Conclusion

We have proposed the possibility to produce squeezed state of light simply with a single conducting

mirror without elaborate experimentation to produce squeezed vacuum. The electromagnetic field

modes near a perfect mirror-are modified with respect to those in free space due to the cavity

QED effects: the modes of the vacuum fluctuations have sinusoidal spatial dependence from the
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mirror. Thesemodified vacuum-fieldmodes,whencombinedwith a coherentlight, may produce
spatially modulated squeezingeffectsfor the coherentlight, which canbe measuredin a balanced
homodyne detection scheme. If we divide a coherentlocal oscillator with a 50:50 beam splitter
and combinewith the modulated vacuumfield, weestimatethat the quantum fluctuations of the
combined light are reducedby as much as 50% below the intrinsic fluctuations of the coherent
light at distancesz = nA (n : positive integer) between the photodetectors and the perfect mirror.

Moreover, at those position, we reduced the fluctuation of the difference of two beams which are

come from the unused beam splitter. In other words, we can obtain the highly sub-Poissonian

fluctuation of the difference which may come from the totally correlated beams such as photon

twins generated by the parametric amplification [9].

The finite laser linewidth degrades the spatial modulation by a factor e -z2ak_, but this factor

can be neglected if we use a narrow linewidth laser. Decreasing the distance between the perfect

mirror and the detector will also help. The imperfect reflectivity of the mirror may slightly decrease

the modulation of the vacuum field. But, since the reflectivity of a metal-coated mirror at the

optical frequency is about 97% , this also gives negligible effects. The most important practical

limit comes from the characteristics of the photodetector. We need a detector whose quantum

efficiency is close to unity and whose absorption coefficient is large enough that the depth of the

effective absorption region is smaller than the wavelength (e.g., Ge type photo detector). Including

all these limits we have calculated the quantum fluctuation of the light intensity in the last section

and shown in Fig. 3. The results indicate that we may increase the ratio of the average intensity

to the intensity fluctuation using this homodyne detector with a good conducting mirror.
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Fig. 1 Homodyne detector. D1, D2 : photo detector, B.S. : beam splitter. E, and EL represent
the signal and local oscillator, respectively.
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Fig. 2 The vacuum mode relations in the beam splil1_.r wil h a conducling mirror.
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